
PAMPAS: Real-Valued Graphical Models for Computer Vision

M. Isard
Microsoft Research

Mountain View, CA 94043

Abstract

Probabilistic models have been adopted for many com-
puter vision applications, however inference in high-
dimensional spaces remains problematic. As the state-
space of a model grows, the dependencies between the di-
mensions lead to an exponential growth in computation
when performing inference. Many common computer vision
problems naturally map onto the graphical model frame-
work; the representation is a graph where each node con-
tains a portion of the state-space and there is an edge be-
tween two nodes only if they are not independent condi-
tional on the other nodes in the graph. When this graph
is sparsely connected, belief propagation algorithms can
turn an exponential inference computation into one which
is linear in the size of the graph. However belief propaga-
tion is only applicable when the variables in the nodes are
discrete-valued or jointly represented by a single multivari-
ate Gaussian distribution, and this rules out many computer
vision applications.

This paper combines belief propagation with ideas from
particle filtering; the resulting algorithm performs infer-
ence on graphs containing both cycles and continuous-
valued latent variables with general conditional probability
distributions. Such graphical models have wide applicabil-
ity in the computer vision domain and we test the algorithm
on example problems of low-level edge linking and locating
jointed structures in clutter.

1. Introduction

Probabilistic techniques for modelling uncertainty have
found widespread success in computer vision. Their ap-
plication ranges from pixel-level image generation models
[13, 7] to tracking in high-level parametric spaces [11, 22]
however as the size of the state-space grows the “curse
of dimensionality” can cause an exponential growth in the
computations necessary to perform inference. Many proba-
bilistic vision models naturally decompose into a graphical
model structure [14]; basic components become nodes in a
graph where each node is conditionally independent of all

but its near neighbours. When the nodes are image patches
the neighbours may be spatially close in an image, adjacent
levels in a multi-scale representation or nearby time instants
in an image sequence. Alternatively many complex objects
can be decomposed into graphs where the nodes are sub-
parts of the object and an edge indicates that two subparts
are physically connected. The advantage of this representa-
tion is that some formerly exponential inference computa-
tions become linear in the size of the graph.

Exact inference on graphical models is possible only in
restricted circumstances [14]; the (directed) graph must be
acyclic and the joint distribution over those latent variables
which are not discrete must be a single multivariate Gaus-
sian. When a model violates these restrictions, Gibbs sam-
pling can be used to draw approximate samples from the
joint distribution [9] but for most computer vision applica-
tions this technique remains intractable. Approximate in-
ference methods can be used for Conditional Linear Gaus-
sian models [16] including time series [3]. Recently two
methods have been widely studied in the computer vision
literature to perform approximate inference on more gen-
eral classes of graph; loopy belief propagation [26] (LBP)
can be applied to graphs with cycles, though it still only ap-
plies to discrete or jointly Gaussian random variables; and
particle filtering [5] allows the use of very general distribu-
tions over continuous-valued random variables but applies
only to graphs with a simple linear chain structure.

The restriction to Gaussian latent variables is particularly
onerous in computer vision applications because clutter in
image generation models invariably leads to highly non-
Gaussian, multi-modal posterior distributions. This effect
largely accounts for the popularity of particle filtering in
the computer vision tracking community. In this paper we
describe the PAMPAS algorithm (PArticle Message PASsing)
which combines LBP with ideas from particle filtering. It
has wide applicability in the computer vision domain, and
increases the range of complex continuous-valued models
which admit tractable probabilistic inference. We investi-
gate the behaviour of the algorithm on test problems includ-
ing illusory-contour finding and locating a jointed structure.
Additionally we argue that an algorithm which performs

tractable inference over continuous-valued graphical mod-
els is a promising tool for research into unified computer vi-
sion models implementing a singe probabilistic framework
all the way from the pixel level to a semantic description.

2. Belief propagation

Belief propagation (BP) has been used for many years
to perform inference in Bayesian networks [14] and has re-
cently been applied to graphs with cycles under the name
of loopy belief propagation [26]. The method consists in
passing messages between the nodes of the graph. When all
the latent variables are discrete-valued the messages can be
encoded as matrices, and when the continuous-valued vari-
ables are jointly Gaussian the messages can be summarised
using a mean and covariance matrix.

When using models with more complex continuous-
valued marginal distributions the data representation for
messages becomes problematic since as they are propagated
their complexity grows exponentially [18]. Techniques ex-
ist for pruning the representations when the potentials and
likelihoods are exponentional distributions [16, 19, 2] and
while these can be used to perform inference over Gaussian
mixture models like those in this paper, they are not well
suited to the complex likelihoods which arise in computer
vision applications. When the graph is a chain a particle
filter [5] can be used which represents the marginals with a
non-parametric form, the particle set. Particle filtering has
been widely used in computer vision largely because it per-
forms well with common image likelihood models.

This section begins with a brief description of standard
BP and goes on to describe the PAMPAS algorithm which
modifies BP to use particle sets as messages and thus per-
mits approximate inference over general continuous-valued
graphical models. Sudderth et al [23, 24] have indepen-
dently developed an almost identical algorithm and a com-
parison is presented in section 2.5.

2.1. Discrete Belief Propagation

Belief propagation can in general be stated using a pair-
wise MRF formulation [26]. Consider a set of latent-
variable nodes X = {X1, . . . , XM} paired with a set of
observed nodes Y = {Y1, . . . , YM}. The conditional inde-
pendence structure of the problem is expressed in the neigh-
bourhood set P . A pair of indices (i, j) ∈ P if the hidden
node Xj is not conditionally independent of Xi given the
other nodes in the graph, and in this case we say Xi is a
parent of Xj and by slight abuse of notation i ∈ P(j).

For tutorial simplicity, when the Xi are discrete-valued
random variables we assume each takes on some value
xi ∈ {1, . . . , L} ≡ L. Given a fixed assignment to Y
the observed and hidden nodes are related by observation

functions φi(xi, yi) ≡ φi(xi) : L → R. Adjacent hidden
nodes are related by the correlation functions ψij(xj , xi) :
L × L → R. The joint probability over X is given by

P (X) =
1

Z

∏

(i,j)∈P

ψij(xj , xi)

(

∏

i

φi(xi)

)

. (1)

The belief propagation algorithm introduces variables
such as mij(xj) which can intuitively be understood as a
message from hidden node i to hidden node j about what
state node j should be in. Messages are computed itera-
tively using the update algorithm

mij(xj)←
∑

xi∈L

φi(xi)ψij(xj , xi)
∏

k∈P(i)\j

mki(xi)

(2)
and the marginal distribution of Xi (the node’s belief) is
given by

bi(xi) ∝ φi(xi)
∏

j∈P(i)

mji(xi). (3)

2.2. Belief propagation in particle networks

When a problem calls for continuous-valued random
variables Xi ∈ R

D then φi(xi) : R
D → R and

ψij(xj ,xi) : R
D × R

D → R and (1) now defines a prob-
ability density. In the continuous analogues of (2) and (3)
now mij(·) and bi(·) are functions rather than L-element
arrays; in fact we will assume that they are normalisable
functions which can be interpreted as probability density
functions. Now (2) becomes

mij(xj)←

∫

RD

ψij(xj ,xi)φi(xi)
∏

k∈P(i)\j

mki(xi)dxi.

(4)
If the structure of the network is such that the marginal dis-
tribution at each node is Gaussian, this integral can be per-
formed exactly [19]. As noted above, if any of the mij or
φi violate this conditional linear Gaussian structure exact
inference is intractable and the mij must be replaced by an
approximation; the PAMPAS algorithm uses particle sets.

At the heart of any algorithm for belief propagation with
particle sets is a Monte-Carlo approximation to the integral
in (4). We set out here a general algorithmic framework for
performing this approximation and in section 2.4 describe
the PAMPAS algorithm which is a specific implementation
suitable for common computer vision models.

The function

pM
ij (xi) ≡

1

Zij

φi(xi)
∏

k∈P(i)\j

mki(xi) (5)

is denoted the foundation of message mij(·) where Zij is a
constant of proportionality which turns pM

ij (·) into a proba-
bility density. A Monte-Carlo integration of (4) yields m̃ij ,
an approximation of mij , by drawing N samples from the
foundation s

n
ij ∼ p

M
ij (·) and setting

m̃ij(xj) =
1

N

N
∑

n=1

ψij(xj , s
n
ij). (6)

In general it is possible to pick an importance function
gij(xi) from which to generate samples s

n
ij ∼ gij(·) with

(unnormalised) importance weights πn
ij ∝ pM

ij (sn
ij)/g(s

n
ij)

in which case the m̃ij is a weighted mixture

m̃ij(xj) =
1

∑N

k=1 π
k
ij

N
∑

n=1

πn
ijψij(xj , s

n
ij). (7)

When the marginal distribution over xi is required, samples
s
n
i can be drawn from the estimated belief distribution

b̃i(xi) =
1

Zi

φi(xi)
∏

j∈P(i)

m̃ji(xi) (8)

either directly or by importance sampling as above and
these samples can be used to compute expectations over the
belief, for example its mean and higher moments. By fix-
ing a set of samples s

n
i at each node a Gibbs sampler can

be used to generate samples from the joint distribution over
the graph and this is described in section 2.4.

2.3. Choice of importance function

Some limitations of the approach in section 2.2 can
be seen by considering a simple example. Suppose that
we wish to perform inference on a three-node network
(X1,X2,X3) which has the chain structure:

P(1) = (2), P(2) = (1, 3), P(3) = (2).

Two distinct inference chains are being sampled: X1 →
X2 → X3 and X3 → X2 → X1 but the information is
not combined in any of the messages; there is no “mix-
ing” between the forward and backward directions. This
situation also arises whenever there is a layered structure to
the graph with a set of low-level nodes passing information
up to higher levels and high-level information propagating
back down. Of course the belief does correctly incorpo-
rate information from both directions, but the efficiency of a
Monte Carlo algorithm is strongly dependent on the sample
positions so if possible we would like to use all the available
information when choosing these positions.

One solution is to use importance sampling for some of
the particles [16] and a natural choice of function is the cur-
rent belief estimate g(xi) = b̃i(xi) in which case the impor-
tance weights are πn

ij = 1/m̃ji(s
n
ij). In the context of the

simple chain given above this algorithm amounts to smooth-
ing the distribution. Smoothing has been proposed for par-
ticle filters [12] but previous algorithms merely updated the
particle weights in a backward pass rather than generating
new particle positions localised in regions of high belief.

2.4. The PAMPAS algorithm

A property of many computer vision models is that the
potentials ψij(xj ,xi) can be written as a mixture of Gaus-
sians and that the likelihoods φi(xi) are complex and dif-
ficult to sample from but can be evaluated up to a multi-
plicative constant. We now describe the PAMPAS algorithm
which is specialised to perform belief propagation for this
type of model; section 2.5 includes a brief sketch of a more
general algorithm [24] for which these Gaussian restrictions
do not apply.

For notational simplicity we describe the case that each
potential is a single Gaussian plus a Gaussian outlier pro-
cess though the extension to mixtures of Gaussians is
straightforward. Setting λo to be the fixed outlier proba-
bility and µij and Λij the parameters of the outlier process,

ψij(xj ,xi) = (1− λo)N (xj ; fij(xi), Gij(xi)) +

λoN (xj ;µij ,Λij)
(9)

where fij(·) and Gij(·) are deterministic functions, poten-
tially non-linear, respectively computing the mean and co-
variance matrix of the conditional Gaussian distribution.
Each message approximation m̃ij is now a mixture of N
Gaussians:

m̃ij(xj) =
(1− λo)
∑N ′

k=1 π
k
ij

N ′

∑

n=1

πn
ijN (xj ; fij(s

n
ij), Gij(s

n
ij))

+ λoN (xj ;µij ,Λij)

(10)

where N ′ = N − 1 is the number of samples drawn during
the Monte-Carlo integration. The message is summarised
by N triplets:

m̃ij = {(πn
ij , s

n
ij ,Λ

n
ij) : 1 ≤ n ≤ N}. (11)

where πN
ij , s

N
ij and ΛN

ij correspond to the outlier process
and are fixed throughout the algorithm. A potential which
encodes a mixture of J Gaussians withK Gaussian outliers
will lead to N ′ = (N −K)/J which is only practical for
fairly small values of J .

As indicated in section 2.3 it makes sense to importance-
sample some fraction of the message particles from the ap-
proximate belief distribution. In fact, because φi is assumed
to be hard to sample from but easy to evaluate, we will
use importance sampling for all the particles but with two

distinct importance distributions and corresponding weight
functions. A fraction (1 − ν)N ′ of the particles, by slight
abuse of terminology, are denoted direct samples:

s
n
ij ∼

1

Z̃ij

∏

k∈P(i)\j

m̃ki(xi)

πn
ij = φi(s

n
ij)

(12)

and the remaining νN ′ particles we will refer to as impor-
tance samples:

s
n
ij ∼

1

Z̃ij

∏

k∈P(i)

m̃ki(xi)

πn
ij = φi(s

n
ij)/m̃ji(s

n
ij).

(13)

Note that if the network is a forward chain where P(i) ≡
i− 1 and ν = 0 the algorithm reduces exactly to a standard
form of particle filtering [11].

Both (12) and (13) require sampling from a foundation
F which is the product of D mixtures indexed by a label
vector L = (l1, . . . , lD):

F (·) =
1

Z

∑

L

ηLN (·;µL,ΛL) (14)

where from the standard Gaussian product formula

Λ−1
L =

D
∑

d=1

(Λld
d)−1 Λ−1

L µL =

D
∑

d=1

(Λld
d)−1µld

d (15)

ηL =

∏D

d=1 π
ld
d N (·;µld

d ,Λ
ld
d)

N (·;µL,ΛL)
. (16)

This product F is a Gaussian mixture with ND compone-
nents so direct sampling is effectively infeasible for D > 3
for reasonable N . Methods for overcoming this difficulty
are discussed in sections 2.5 and 4. The PAMPAS message
update algorithm is given in figure 1.

When N belief samples s
n
i have been drawn for each

node in X they can be used to sample from the joint dis-
tribution over the graph. This can be done by Gibbs sam-
pling from the discrete probability distribution over labels
L′ = (l1, . . . , lM) whereL′ indexes a sample s

lm
m at each of

the M nodes. The Gibbs sampler updates each component
of this label vector in turn where the marginal probability of
choosing label ld when the other labels are fixed is

P (ld = n) = φd(s
n
i)

∏

j∈P(i)

ψji(s
n
i , s

lj
j). (17)

2.5. Comparison with the NBP algorithm

Sudderth et al [23, 24] have independently developed
an almost identical algorithm for performing belief prop-
agation with the aid of particle sets, which they call Non-
Parametric Belief Propagation, or NBP. In order to deal with

1. Draw samples from the incoming message product.

(a) For 1 ≤ n ≤ (1− ν)(N − 1):

i. Draw s̃
n
ij ∼

∏

k∈P(i)\j m̃ki(·).

ii. Set π̃n
ij = 1/(N − 1).

(b) For (1− ν)(N − 1) < n ≤ N − 1:

i. Draw s̃
n
ij ∼

∏

k∈P(i) m̃ki(·).

ii. Set γn
ij = 1/m̃ji(s̃

n
ij).

(c) For (1− ν)(N − 1) < n ≤ N − 1:

i. Set π̃n
ij = νγn

ij/
∑N−1

k=1+(1−ν)(N−1) γ
k
ij .

2. Apply importance correction from likelihood. For
1 ≤ n ≤ N − 1:

(a) Set π̄n
ij = π̃n

ijφi(s̃
n
ij)

3. Store normalised weights and mixture components.
For 1 ≤ n ≤ N − 1:

(a) Set πn
ij = (1− πN

ij)π̄n
ij/
∑N−1

k=1 π̄k
ij

(b) Set sn
ij = fij(s̃

n
ij).

(c) Set Λn
ij = Gij(s̃

n
ij).

Figure 1. The message update algorithm.

the exponential blowup in the message product as D in-
creases, they introduce a Gibbs sampler which is sketched
below. We have used this Gibbs sampler for the central node
in the jointed object model of section 3.3 which has 4 in-
coming messages.

The main remaining difference between the algorithms
is the way in which the message foundations are inter-
preted. In [24] N samples r

n
ij are generated from pM

ij (xi)
and then for each r

n
ij a single sample s

n
ij is generated by

sampling from the potential ψij(·, r
n
ij). The message mix-

ture m̃ij(xj) is then formed by placing identical diagonal-
covariance Gaussian kernels about the s

n
ij . This additional

smoothing kernel leads to variance estimates which are bi-
ased upwards of their true values. This step is unnecessary
when the potentials are small mixtures of Gaussians so we
omit it; thus we achieve unbiased kernel estimates as well
as generating less noisy samples from the message distri-
bution, and in addition we do not have the problem of se-
lecting a kernel width. The advantage of the technique in
[24] is that it allows more general potentials which are not
mixtures of Gaussians. Note that if the potentials are com-
plex (for example a mixture of J = 100 Gaussians) neither
approach will adequately represent the product unless N is
very large. The two algorithms also differ in the application
of φi and NBP is specialised to models where φi is slowly

varying with respect to the kernel bandwidth.
Sudderth et al [23, 24] propose a Gibbs sampler which

performs approximate sampling from the message product
F inO(KDN) operations per sample, whereK is the num-
ber of iterations of the sampler. A sample is drawn from F
by first choosing a label vector L using a Gibbs sampler
and then generating a random sample from the Gaussian
FL. The Gibbs sampler works by sampling ld with all the
other labels in L held fixed for each d in turn. With all of
L but ld fixed the marginal product-component weights are
given by

ηn
d ∝

πn
dN (·;µn

d ; Λn
d)

N (·;µLn ,ΛLn)
(18)

where Ln = (l1, . . . , ld−1, n, ld+1, . . . , lD).
We use this sampler with K = 100 in section 3.3 for one

message product where D = 4. Generating an entire mes-
sage using the Gibbs sampler takes O(KDN 2) operations
which is preferable to brute force sampling when D > 3
in cases where KD has the same order of magnitude as
N . While [23] and [24] demonstrate that the Gibbs sam-
pler is very effective for some applications, we have found
that in clutter the algorithm may generate samples in re-
gions with very low probability mass. This can lead to prob-
lems when importance sampling since some of the m̃ji(s

n
ij)

in (13) may be very small relative to other samples leading
to a high weight πn

ij which suppresses the other samples in
the set. As a workaround we adopted a heuristic to smooth
these importance weights by replacing any πn

ij > 0.25ν by

πn
ij ← (ν − πn

ij)/6 (19)

and renormalising (recall from step 1c in figure 1 that πn
ij <

ν). We believe that the problem of generating good sam-
ples from a product of mixtures when D is large is an open
research question, and discuss this further in section 4.

3. Results

3.1. Edge linking models

We exercised the algorithm using a simple edge model.
In these experiments each node in the graph corresponds
to an “edgel” xi = (xi, yi, αi, λi) ∈ R

4 where (xi, yi) is
an image coordinate, αi is an orientation angle and λi is the
distance between adjacent edgels. We use a simple diagonal
Gaussian conditional distribution model for j = i+1 where

ψij(xj ,xi) =

N (xj ;xi + λi cosαi, σ
2
p)×N (yj ; yi + λi sinαi, σ

2
p)×

N (αj ;αi, σ
2
α)×N (λj ;λi, σ

2
λ)

and the model for j = i−1 is the same but in reverse. A sim-
ilar model has been used for pixel-based illusory contour

completion [1, 25] as well as finding segmentation edges
using particle filtering [21], and if the φi are Gaussian it
is very similar to the standard snake model [15]. Figure 2
demonstrates the effectiveness of importance sampling us-
ing the belief distribution. The top images show messages

Figure 2. Importance sampling mixes infor-
mation from forward and backward chains.
The top images show the messages passed
forwards and backwards along a chain in
black and white respectively, and the bottom
images show the resulting beliefs. Each dis-
played edgel is the mean of a Gaussian mix-
ture component. On the left no importance
sampling is used and the forward and back-
ward messages do not interact. With impor-
tance sampling (ν = 0.5) the message parti-
cles are guided to areas of high belief; this
is shown on the right after 5 iterations of the
algorithm.

and the bottom beliefs, and the φi are uniform to emphasise
the sampling behaviour in the absence of image data. The
left column shows a run of the PAMPAS algorithm with no
importance sampling (ν = 0) on a 16-link chain where each
end of the chain is initialised from a different prior distribu-
tion. Since there is no interaction between the forward and
backward messages the particles spread away from each end
in a random walk producing the noisy belief distribution
shown below. The right column shows the same particle
sets after 5 iterations of the algorithm now using importance
sampling with ν = 0.5. The message particles become con-

centrated in areas of high belief making the belief estimates
below less noisy.

In the absence of image measurements the above model
is Gaussian and so the belief could be estimated by a vari-
ety of methods. The cluttered image data used in figure 3
causes the marginals to become highly non-Gaussian; the
algorithm converges on a globally plausible solution despite
strong local distractors. Here the φi used are simple robust
gradient-affinity operators. The incorporation of informa-
tion along the chain in both directions can be expected to
improve the performance of e.g. the Jetstream algorithm
[21] which is a particle-based edge finder.

Figure 3. An edge linking model finds global
solutions. The images show (in raster order)
the belief estimates after 1, 5, and 10 itera-
tions, and 7 samples from the joint graph af-
ter 10 iterations. The belief stabilises on a
bimodal distribution with most of the weight
of the distribution on the continuous edge as
can be seen on the bottom right image.

3.2. Illusory contour matching

We tested the algorithm on an illusory-contour find-
ing problem shown in figure 4. The input image has C
“pacman”-like corner points where the open mouth defines
two edge directions leading away from the corner separated
by an angle Cα. The task is to match up the edges with
smooth contours. We construct 2C chains each of four
links, and each is anchored at one end with a prior start-

ing at its designated corner pointing in one of the two edge
directions. At the untethered end of a chain from corner c is
a “connector” edgel which is attached to (conditionally de-
pendent on) the connectors at the ends of the 2C − 2 other
chains not starting from corner c. We use the same edgel
model as in section 3.1 but now each node state-vector xi

is augmented with a discrete label υi denoting which of the
2C − 2 partner chains it matches, and the potentials at the
connector are modified so that ψij(xj ,xi) = 0 when υi and
υj do not match. This special form of potential allows us
to form the message product in O(N 2C) operations rather
than O(N2C−1) as a naive approach would dictate. Space
does not permit a full description of the algorithm here but
it is very similar to the Mixed Markov Model approach [8].

Figure 4 shows the model being applied to two scenarios
with C = 6 in both cases. First, Cα = 11π/36 which
leads to two overlapping triangles with slightly concave
edges when the chains are linked by the algorithm. Sec-
ondly, Cα = 7π/9 which leads to a slightly convex regular
hexagon. The same parameters are used for the models in
both cases, so the algorithm must adapt the edgel lengths to
cope with the differing distances between target corners.

Figure 4. The PAMPAS algorithm performs illu-
sory contour completion. Depending on the
angle at which the chains leave the corner
positions, the belief converges on either two
overlapping triangles or a single hexagon.

3.3. Finding a jointed object in clutter

Finally we constructed a graph representing a jointed ob-
ject and applied the PAMPAS algorithm (combined with the
Gibbs sampler from [24]) to locating the object in a clut-
tered scene. The model consists of 9 nodes; a central cir-
cle with four jointed arms each made up of two rectangular
links. The circle node x1 = (x0, y0, r0) encodes a position
and radius. Each arm node xi = (xi, yi, αi, wi, hi), 2 ≤
i ≤ 9 encodes a position, angle, width and height and
prefers one of the four compass directions (to break sym-
metry). The arms pivot around their inner joints, so the po-

tential to go from an inner arm 2 ≤ i ≤ 5 to the outer arms
j = i+ 4 is given by

xj = xi + hi cos(αi) +N (·; 0, σ2
p)

yj = yi + hi sin(αi) +N (·; 0, σ2
p)

αj = αi +N (·; 0, σ2
α)

wj = wi +N (·; 0, σ2
s) hj = hi +N (·; 0, σ2

s)

and the ψ1i(xi,x1) from the circle outwards are similar.
Going from the outer to the inner arm, the potential is not
Gaussian but we approximate it with the following:

xi = xj − hj cos(αi) +N (·; 0, hjσs| sin((i− 2)π/2)|σ2
p)

yi = yj − hj sin(αi) +N (·; 0, hjσs| cos((i− 2)π/2)|σ2
p)

αi = αj +N (·; 0, σ2
α)

wi = wj +N (·; 0, σ2
s) hi = hj +N (·; 0, σ2

s).

The ψi1(x1,xi) are straightforward:

x1 = xi +N (·; 0, σ2
p) y1 = yi +N (·; 0, σ2

p)

r1 = 0.5(wi/δw + hi/δh) +N (·; 0, σ2
s).

The object has been placed in image clutter in figure 5.
The clutter is made up of 12 circles and 100 rectangles
placed randomly in the image. The messages are initialised
with a simulated specialised feature detector: x1 is sam-
pled from positions near the circles in the image and the
arms are sampled to be near the rectangles, with rectangles
closer to the preferred direction of each arm sampled more
frequently. Each node contains N = 75 particles so the
space is undersampled. After initialisation the PAMPAS al-
gorithm (using the Gibbs sampler from [24] for the circle’s
messages and belief) is iterated without further recourse to
the “feature detector” information. All of the potentials in-
clude a Gaussian outlier covering the whole image which
allows samples to be generated far from the initialisation
particles. After two or three iterations the belief distribu-
tion has converged on the object. In this case it might be
argued that it would be more straightforward to simply de-
tect the circles and perform an exhaustive search near each.
The second example of figure 5 demonstrates the power of
the probabilistic modelling approach, since now the circle at
the centre of the object has not been displayed, simulating
occlusion. Of course no x1 initialisation samples are gener-
ated near the “occluded” circle, but even after one iteration
the belief at that node has high weight at the correct loca-
tion due to the agreement of the nearby arm nodes. After a
few iterations the belief has converged on the correct object
position despite the lack of the central circle.

4. Conclusion

We have concentrated in this paper on examples with
synthetic data in order to highlight the working of the PAM-

Figure 5. A jointed object is located in clut-
ter. Two experiments are shown, with and
without a simulated occlusion. The top two
images show a sample from the joint distri-
bution for each experiment, while the lower
images show the full distributions. The sec-
ond experiment models an occluded object
with no circle present in the image where the
belief has placed it. This experiment uses the
Gibbs sampler from [24] to form the message
product for the central node.

PAS algorithm. The applications we have chosen are highly
suggestive of real-world problems, however, and we hope
the promising results will stimulate further research into
applying continuous-valued graphical models to a variety
of computer vision problems. Sections 3.1 and 3.2 suggest
a variety of edge completion applications. Section 3.3 in-
dicates that the PAMPAS algorithm may be effective in lo-
cating articulated structures in images, in particular people.
Person-finding algorithms exist already for locating and
grouping subparts [20] but they do not naturally fit into a
probabilistic framework. Recently several researchers have
had promising results finding jointed structures in images
using discretised graphical model representations [6, 10, 4].
Both discretising and using the PAMPAS algorithm result
in approximations, and the tradeoffs between the two ap-
proaches remain to be investigated.

One obvious advantage of using a graphical model rep-
resentation is that it extends straightforwardly to tracking,
simply by increasing the size of the graph and linking nodes
in adjacent timesteps. Another area of great interest is link-
ing the continuous-valued graph nodes to lower-level nodes
which may be discrete-valued as in [13]. In fact, researchers
in the biological vision domain have recently proposed a
hierarchical probabilistic structure to model human vision
which maps closely onto our algorithmic framework [17].

We are performing current research, to be published else-
where, into the problem of sampling from products of Gaus-
sian mixtures. The Gibbs sampler of [24] is very flexi-
ble and straightforward to implement and performs well on
some important models, but for cluttered distributions of
the type we have encountered K must be set prohibitively
large to get reliable samples. We have developed heuris-
tic algorithms to address this clutter problem which per-
form well on our test applications, but are only practical
for D < 9. The design of an efficient, generally effective
sampler which scales to large D remains an open problem.

Acknowledgements

Helpful suggestions to improve this work were con-
tributed by Michael Black, David Mumford, Mike Burrows,
Martin Abadi, Mark Manasse and Ian Reid.

References

[1] J. August and S.W. Zucker. The curve indicator random field: curve
organization via edge correlation. In Perceptual Organization for
Artificial Vision Systems. Kluwer Academic, 2000.

[2] C.M. Bishop, D. Spiegelhalter, and J. Winn. Vibes: A variational
inference engine for bayesian networks. In NIPS, 2002.

[3] X. Boyen and D. Koller. Tractable inference for complex stochastic
processes. In Proceedings of the 14th Annual Conference on Uncer-
tainty in Artificial Intelligence, 1998.

[4] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy
belief propagation. In Proc. 7th European Conf. Computer Vision,
2002.

[5] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer-Verlag, 2001.

[6] P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial
structures. In Proc. Conf. Computer Vision and Pattern Recognition,
pages 66–73, 2000.

[7] W.T. Freeman, E.C. Pasztor, and O.T. Carmichael. Learning low-
level vision. Intl. J. Computer Vision, 40(1):25–47, 2000.

[8] A. Fridman. Mixed markov models. In Proc. Second International
ICSC Symposium on Neural Computation, 2000.

[9] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 6(6):721–741, 1984.

[10] S. Ioffe and D. Forsyth. Human tracking with mixtures of trees. In
Proc. 8th Int. Conf. on Computer Vision, volume 1, pages 690–695,
2001.

[11] M. Isard and A. Blake. Condensation — conditional density propa-
gation for visual tracking. Int. J. Computer Vision, 28(1):5–28, 1998.

[12] M.A. Isard and A. Blake. A smoothing filter for Condensation. In
Proc. 5th European Conf. Computer Vision, volume 1, pages 767–
781, 1998.

[13] N. Jojic, N. Petrovic, B. J. Frey, and T. S. Huang. Transformed hid-
den markov models: Estimating mixture models of images and in-
ferring spatial transformations in video sequences. In Proc. Conf.
Computer Vision and Pattern Recognition, 2000.

[14] M.I. Jordan, T.J. Sejnowski, and T. Poggio, editors. Graphical Mod-
els : Foundations of Neural Computation. MIT Press, 2001.

[15] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. In Proc. 1st Int. Conf. on Computer Vision, pages 259–268,
1987.

[16] D. Koller, U. Lerner, and D. Angelov. A general algorithm for ap-
proximate inference and its application to hybrid bayes nets. In Pro-
ceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence, pages 324–333, 1999.

[17] T.S. Lee and D. Mumford. Hierarchical bayesian inference in the
visual cortex. Journal of the Optical Society of America A, 2002
(submitted).

[18] U. Lerner. Hybrid Bayesian Networks for Reasoning about Complex
Systems. PhD thesis, Stanford University, October 2002.

[19] T.P. Minka. A family of algorithms for approximate Bayesian infer-
ence. PhD thesis, MIT, January 2001.

[20] G. Mori and J. Malik. Estimating human body configurations us-
ing shape context matching. In Proc. 7th European Conf. Computer
Vision, pages 666–680, 2002.

[21] P. Perez, A. Blake, and M. Gangnet. Jetstream: Probabilistic contour
extraction with particles. In Proc. 8th Int. Conf. on Computer Vision,
volume II, pages 524–531, 2001.

[22] H. Sidenbladh, M.J. Black, and L. Sigal. Implicit probabilistic mod-
els of human motion for synthesis and tracking. In Proc. 7th Euro-
pean Conf. Computer Vision, volume 1, pages 784–800, 2002.

[23] E.B. Sudderth, A.T. Ihler, W.T. Freeman, and A.S. Willsky. Nonpara-
metric belief propagation. Technical Report P-2551, MIT Laboratory
for Information and Decision Systems, 2002.

[24] E.B. Sudderth, A.T. Ihler, W.T. Freeman, and A.S. Willsky. Non-
parametric belief propagation. In CVPR, 2003.

[25] L.R. Williams and D.W. Jacobs. Stochastic completion fields: A
neural model of illusory contour shape and salience. Neural Compu-
tation, 9(4):837–858, 1997.

[26] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief
propagation and its generalizations. Technical Report TR2001-22,
MERL, 2001.

